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THE NON-STATIONARY CALCULATION OF FLOW PAST A RECTANGULAR
WING OF LOW ASPECT RATIO

B. B. Bukhovtsev and N. V. Stepanova

ABSTRACT. A study ot the action of an ideal fluid flow on
an infinitely siender wing of rectangular planform per-
forming oscillations in the flow. This study shows that the
integral equation (derived by Bisplinghoff et al. on the
basis of the Biot-Savart relation) describing the vorticity
at the wing and in the wake can be solved by a vortex-
lattice technique. The non-stationary forces thus obtained
yieid satisfactory resuits for the total 1ifting force, even
for a relatively large lattice step. The effect of the wake
appears to be substantial only for distances on the order of
the chord and may be disregarded when the wavelength exceeds
the chord by a factor of 10 or greater. The lift distribu-
tion over an oscillating wing of finite aspect ratio is
calculated by reducing the integral equation
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to a system of algebraic equations with the distributed vor-
tices replaced by concentrated !l-shaped vortices which
consider the influence of the vortex sheet.

1. Fundamental Formulas of Non-stationary Theory /821

We will analyze the effect of the flow of an ideal fluid on an oscillating
wing of low aspect ratio. Let an infinitely thin wing of rectangular planform

be located in the plane y = 0 (Figure 1). The vclocity.of the oncoming flow is

directed along the x axis and is equal to UO The velocity of the fluid

particles near the wing will be designated as V= {U, + u,v,w}. We will assume
v

that the perturbations of the flow are slight, i.e. u,v,w < UO’ and we will

limit ourselves to the linear approximation of the equations of hydrodynamics.

If we know the vertical component of the velocity of the wing V(x,0,z,t),
then, in accordance with non-stationary theory, the vortical intensity on the
wing and in the wake is found from the integral equation:

Y Numbers in the margin indicate pagination in the foreign text.
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This equation may be obtained by using the Biot-Savart law, assuming that the

vortex sheet on the wing and in the wake determines the normal velocity
component on the wing [1].

The components of linear circulation ?x and ?z (Figure 1) are interrelated

by the equation of continuity:

ox 2 (2)

From the equations of hydrodynamics we may express the pressure difference
on the plane y = 0 by the component ?Z:
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The 1lifting force acting on some area S of the wing is determined, in turn, /83
by the integral

Y= — :U‘ Ap(x, 2, t) dxdz. (4)

If the motion of the wing is given in the form of the harmonic time function

E(x, 0,2, ) =vu(x,0, z)eet, .

equation (3) for amplitudes becomes

Ap(x, z) =U,py, (%, 2) + iop fyz ¢, 2)at. (5)
0

The pressure jumps on the trailing edge of the wing (x = 2B) and in the wake are
equal to zero. Therefore, for the range x = 2B we have

‘ ik
, — = (x—2B)
Y =—-LErge, ° 6

where I'(z) is the total circulation around the wing:

fe}{fgg,z}e%.

Formula (6) takes into consideration the Strouhal number k = %E. We can also
0

find the amplitude Yy in the wake by using the equation of continuity (2). Thus
only the function vz(s,f) on the wing is unknown in equation (1). This integral

equation can be solved accurately in several particular cases, such as the
static problem (k = 0) for wings of infinite and finite span, the non-
stationary problem for a wing of infinite span (profile) (v, =7, (x), v, = 0).



For the non-stationary problem in the case of a wing of finite span,
equation (1) can be solved only approximately.

2. Approximate Method

Let us now turn our attention from the distribution density of circulation
to concentrated vortices. For this purpose we will divide the surface of the
wing into nm equal rectangles with the dimensions 2a and 2b (bn = B is the half-
chord and am = L is the half-span). 1In each rectangle, as in [2], we will place
a concentrated II-shaped vortex at a distance b/2 from the leading edge. The
ends of the vortex will extend to infinity along the latteral sides of the
rectangle (Figure 2).

We will find the intensity of the vortex in rectangle (Z,j) Ty by
averaging the density of circulation 72(E,§):
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The coordinates EZ and §j are introduced as illustrated in Figure 2; Fij is the
average density of T, in the rectangle. The total circulation around the wing
will then be

p \
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The analogous averaging of the distribution density of Yy and the use of the

equation of continuity yield, for example, for the total intensity of the vortex

7 i directed along the chord and passing along the right side of rectangle
(Z,3):
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On the other hand, originating from the construction of the M-shaped vortices
(Figure 2), we have for J7;

4
Ti=Y @ T,
p=1

Thus the system described above of concentrated vortices on the wing is
equivalent (in total intensity) to the initial distribution surface density.

If we examine the case of the non-stationary flow around a finite wing, we
find that vortical intensity is not equal to zero, neither on the surface of the
wing nor in the wake. To convert to concentrated vortices in the wake (in
contrast to [3]) we will use the very same division into rectangles with the
dimensions 2a-2b. The imtensity of the I[l-shaped vortex in the wake

9Bi(ﬂ=n'*fl,;-: 'Zz_-j;mi,mwh.expressed through total circulation I‘J.. By using
equations (6) and (7) we obtain
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where we make the following definitions (see Figure 2):

’ 3b - b
En 9 §n+.l 2 [ 9"

The number of rectangles in the wake mN determines the accuracy to which we
consider the effect of the wake. It will be shown below that it is sufficient
to assume N = 10, since the difference in the values of the theoretical coeffi-
cients for N = 5 and N = 10 does not exceed 4%.

It is important to note that the approximate expression (8) is applicable
only for k with low values or when the partitioning step is small, i.e. when



k . . .
H-< 1 (furthermore we may still consider ghe phases of the wave which spreads

throughout the wake).

We will now find the expression for local lifting force acting on one
rectangle. In accordance with equations (4) and (5) we have

-

Va=—oly [& ([v.q 0+ mn,odn]
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For simplicity we then introduce the dimensionless circulation

__Ju (9)
Iy= anly b

Then the loeal lifting force will be

{Iu'i—l 2k (le T 1,1)1 ‘ (10)

For the concentrated vortices constructed above as in formula (1), we will
calculate the vertical component of the perturbed flow in the plane y = 0 by
the Biot-Savart law. The velocity field of a section of the linear vortex
:J |i& expressed by the well-known formula:

"'v(A)=
(see Figure 2 for symbols).

‘7r (cos ¥, — cos B,) ) (1)

The theoretical values for velocity found from formula (11) will coincide
with those found by equation (1) in certain points only. These points,
according to the Prandtl hypothesis, will be located in each rectangle at a
distance gé-from the leading edge (denoted by the crosses in Figure 2). The
coordinates of these points on the wing are symbolized by X715 Zj' (2! =

=1,...,n, j' = 1,...,m).



We will now compute by formula (11) the vertical component of velocity ij

at the point (x zj,) produced by one Il-shaped vortex IZJ.:

AN

M =1,;(A; — A1),

where

. b / ; ‘
Au’ = Z,-'—-Ci’ <‘x,.cl—!§z + l>r o= V(x" —§1)2+ (ZI""Ci)"

By totaling the velocity fields from all vortlces distributed on the wing and in
the wake we find

m
vi(x,.,2,.)
IUO : L 1 [(AIJ Ay) +
I=1 j=1
13*2,, sy - niN _"_g“‘ (12)
s T—e s T 2 (A; —Ary)e B _f].
f=n+1 | C

3. Calculation of a Specific Problem .

Let us consider one particular problem. Specifically, we will represent
the motion of the wing im the following form (Figure 1):

Y(x, 1) = yoefottie —a (x— x,) eled,

i.e. a rigid wing is displaced vertically as a whole and is simultaneously

rotated around the x = X axis. Both motions are harmonic with frequency w and

with a phase shift equal to ¢. Then the amplitude of velocity in each point of
the wing will be

0 (%) Jy=0 = [0 [¢p€"® — @ (x — x,)] — Uya.

v X

. . . . 0 0 . .
By introducing the dimensionless parameters h = Ef-and s = §—-the dimensionless

velocity on the straight line x = X0 will be defined by the expression
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The value for velocity from formula (13) must be substituted into formula
(12). The problem of non-stationary flow around a finite wing then reduces to
the solution of system nm of linear equations relative to the unknown IZj' This

equation system was solved by the '"'Strela" computer.

A. The static case. We analyzed the static problem, i.e. the case where
k = 0, basically for the purpose of checking the effect of the shape and number
of rectangles on the calculation results.

We will first of all compare the total 1lifting force for the various wings.
In accordance with (10) the lifting force acting on a wing of area S
(S = 2ma-2nb) for k = 0 will be

Ys= —ﬁu—°—2a2b4a 2 Z Iy = ———sc

=1 f=ll

here we have the coefficient of the lifting force

. n m S

T

T mn Z Ellj'
I=1 j=I

~

On the other hand, with a given angle of attack, constant for the entire wing,
the coeffieicnt of the lifting force will be proportional to the angle of
attack:

dcy,

= m % —

dc
Table 1 lists the experimental results of the coefficient HEX'for various aspect

C,=

ratios A = L/B. In the calculation the number of rectangles was varied, both
along the span (m) and along the chord (n), and the shape of the rectangles (the
ratio %J was also changed. As seen in the table below, the number and shape of

the rectangles had no significant effect on the lifting .force (for a given



aspect A). This points out the stability of the algorithm of the problem in
relation to the partitioning method. Therefore an increase in the number of
rectangles (particularly through the chord) does not improve the accuracy of the
calculation for the total lifting force, but does make it possible to obtain a
more accurate picture of the distribution of the lifting force along the wing.

TABLE 1
a ac,
» " " b e
* - -
| 4
0,8 8 5 - 1/2 1,338
1,6 8 5 1 2,340
2 8 2 1/2 2,707
2 8 3 3/4 2,713
2 8 4 1 2,717
2 6 4 4/3 2,792
2 6 6 2 2,795
2 4 4 2 2,943
3,2 8 5 2 3,535
4,8 8 5 3 4,193
0,4 8 5 4 4,602
8 8 5 5 4,881
oo theoretical values) 6,282 -

The dependence of the magnitude of the coefficient of the 1lifting force on
the aspect is illustrated in Figure 3, where the crosses denote data taken from

Table 1; the solid curve represents the results of analogous calculations found
in [3] (Figure 12.11, p. 186).

We will now examine the
distribution of the lifting force
along the span. For this purpose
we will compute the total circula-
tion around the wing. By sub-
stituting (9) into (7) we obtain
for the dimensionless values

Y
E3 "Ql;'

. . This expression may be compared
with elliptical distribution of
circulation. In accordance with
[1], for an elliptical wing of
Figure 3 given aspect
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Figure 4 illustrates curve 1, which corresponds to the theoretical ellipt-
. . . . . . . T .
ical distribution of dimensionless circulation EL%%3 and curves 2-6, which are
constructed through points computed for wings of various aspect A. As might be
expected, as N\ increases the distribution of the 1lifting force becomes more
uniform. The theoretical results also make it possible to present a clearer
picture of the distribution of the lifting force along the surface of the wing.

B. Non-stationary case. In the case where k # 0 the amplitude of the
velocity of the points on the surface of the wing is a complex value. In the

concrete case which we are solving (see equation (13)), the real portion of the
velocity is the same for the entire wing:

Re (UL;) = —Q —‘ksmq),

10



and the imaginary portion is a function of the coordinate X7 along the chord:

tm (-5 ) = & [hcos ¢ —a(Z )]

The problem of calculating the vortices IZj is thus broken down into two
problems, i.e. the determination of Re IZj and Im IZj' In this case the terms
corresponding to the effect of the wake will play a significant role in equation

(12).

Local 1ifting force, according to (10) will also have a real portion, i.e.
in the phase (or opposite phase) with angle of attack a, and an imaginary

portion, which is shifted by relative to «.

Table 2 1lists the values of the coefficient of the lifting force:

T DT )|
i

The calculations were made for the following values of the parameters: a = 0.03;
h = 0.1; s = 0.5; aspect ratio of the wing A = 1.6.

TABLE 2 The table shows two
groups of problems for
k = 0.2 and k = 0.8.

i During calculation the
k N ReCy-t0t. | ImCy-iot number N of rectangles in
. the wake was varied. We
0,2 0 205 293 see from the table that
8'3 ]g ggi ﬁﬁ when k is small the effect
0.8 0 1641 783 of the wake is insignif-
0,8 5 —1335 —839 ' icant, while when k = 0.8
0.8 10 —1317 —805 ' the effect of the value of

N is perceptible. Even in
this case, however, the
results obtained for N = 5
and N = 10 differ by not
more than 4%. Henceforth, therefore, we will confine ourselves to the value
N = 10 for all k < 1.
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In conclusion let us examine the dependence of the lifting force on the
value of the adduced frequency of k. The coefficients of the lifting force are
shown in Figure 5 on a complex plane. The solid curve is drawn through calcu-
lated points corresponding to the values k = 0, 0.2, 0.4, 0.6, and 0.8 (the
values for all other parameters are the same as before). The broken curve was
constructed on the basis of data given in [4]. A comparison of the solid and
broken curves show that their divergence does not exceed 20%. Since both
theories make use of approximate methods, which are in good agreement only for
small values of k, the concurrence of the results can be considered as satis-
factory.

It may thus be said that the calculation of non-stationary forces using the
partitioning method described above is entirely possible and produces satis-
factory results for the total lifting force, even for a relatively small number
of rectangles. It should be noted that a reduction in the number of rectangles
significantly reduces the volume of computational operations. But if a clearer
picture of the distribution of the lifting force along the wing is required, the
number of rectangles should be increased.

The effect of the wake is apparently significant only at distances of the
order of the length of the chord. But in those cases where the length of the
wave exceeds the length of the chord by a factor of 10 or greater the effect of
the wake may be disregarded.

The authors are deeply grateful to Professor S. P. Strelkov for his
statement of the problem and for his assistance in this work.
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